The value of acoustic technologies for monitoring bird migration

Andrew Farnsworth, Conservation Science Program

Monitoring using acoustic technologies

- 1) Informing traditional auditory monitoring
- 2) Monitoring species that are difficult to survey.

3) Monitoring migrants by recording flight-calls.

Many species produce flight calls: unique vocalizations, varying in frequency, duration, and pattern; primarily given in sustained flight, presumably for communication.

Recording flight calls: nocturnal

Recording flight calls: diurnal

Recording flight calls: captive birds

Designed by M. Lanzone (Lanzone and Farnsworth submitted)

Raven birds.cornell.edu/Raven

XBAT www.xbat.org

Traditional analysis

Syllabic measurements

Spectral and temporal measurements

CORNELL LAB of ORNITHOLOGY

New ways of representing flight-calls

- Spectrogram Cross Correlation
 - acoustic (particularly "syllabic") similarity among species
 - identify flight-call "template" for each species that best correlates with remaining calls
 - ACOUSTAT/XBAT
 - treat spectrogram data as probability distributions
 - characterize using order statistics (e.g. median)

Swainson's Thrush variation

- Learn the variation in a species you hear often
- Note the differences in trailing modulation, duration, and initial upsweep in these calls

Low frequency, thrush-like calls

• These calls exhibit a wide array of frequencies, degrees of modulation, sweeps, and shapes. However, when heard in passing, these identifications can be challenging.

• Similarity in duration and "shape" for all of these species; slight differences in frequency ranges, degree and depth of modulation.

Sound Spectrogram Settings

Sound Spectrogram Settings

Sound Spectrogram Settings

"The Rosetta Stone..."

0.016 **Orange-crowned Warbler** Galdaniwinged Warbler Vermiyora chrysoptera × PAWH fig Painted Whitestart control was pricing the extension of the 0.043 × RFWA_fig Seid/rusivnoveboracer Red-faced Warbler Lucy's Warbler Cardellina rubrifrons Vermivora luciae × CAWA fig Dentholder pennsylva 0.013 **Nashville Warbler** Vermivora ruficapilla Mac dyllispays Was placer Opantroisadossila Kentusky Wandler Oporornis for 0.059 CORNELL LAD OF CRAFFIT OLOGI

Black Rail Surveys in Virginia

Mike Wilson, College of William and Mary

- Threatened species in VA
- Never systematically surveyed, though anectdotal records from remote marshes
- Determine status
- Point count/playback
- ARUs in known territories to record calling rates
- Still analyzing (!): many other rails, nightjars recorded

Monitoring stopover and migration hotspots Yuma, AZ

Pls: Rich Fischer; Sid Gauthreaux

- Ground truth and radar to index abundance, composition, location, patterns
- Acoustic data <u>for comparison</u>, collected with 6 ARUs in spring 2007
- Knowledge of characteristics, dynamics of migration in SW riparian areas
- Preliminary analyses show correlation between ground truth observations and acoustic recordings in terms of species composition.
- However, some species not detected visually were recorded on ARUs (Yuma Clapper Rail, Swainson's Thrush, Yellow-billed Cuckoo)
- Data still being analyzed at CLO for planned manuscript

Examples:

2005-2007 highlights: 120+ species detected

- <u>Waterbirds</u> American & Least Bitterns, Great Blue & Green Herons, Snow Goose, "Yuma" Clapper & Virginia Rails, Sora, Greater Yellowlegs, Short-billed Dowitcher, Pectoral Sandpiper, Caspian Tern
- <u>Owls. Nightjars, and Cuckoos</u>: Barn Owl, Common Nighthawk, Whip-poor-will, Chuck-will's-widow, Yellow-billed & Black-billed Cuckoos
- Thrushes Wood, Hermit, Swainson's, Gray-cheeked, Bicknell's, Veery
- Wood-warblers 23 spp. including Black-throated Blue, Canada, Connecticut
- Emberizids and Cardinalids: Savannah, White-throated, White-crowned, Brewer's, & Chipping Sparrows, Dickcissel, Blue Grosbeak, Indigo & Lazuli Buntings, Rose-breasted Grosbeak, Scarlet & Western Tanagers

Observations and acoustic recordings correspond in terms of species composition, but some species detected acoustically <u>only</u> (Yuma Clapper Rail, Swainson's Thrush, Yellow-billed Cuckoo).

MMS 2005-009, MOGP

Interactions Between Migrating Birds and Offshore Oil and Gas Platforms in the Northern Gulf of Mexico

Final Report

MMS 2005-009, MOGP

Interactions Between Migrating Birds and Offshore Oil and Gas Platforms in the Northern Gulf of Mexico

Final Report

Call Count/Night, 9-14 Oct 2005

Whip-poor-will calling phenology

Days re full moon
WPWI detections vs Time re sunset, ARU 46, Fort Drum
25 May - 8 Jun 2007

WPWI detections vs Time re sunset, ARU 46, Fort Drum night of 25-26 May 2007 (full moon - 6)

WPWI detections vs Time re sunset, ARU 46, Fort Drum night of 7-8 Jun 2007 (full moon + 7)

Minutes re sunset

Minutes re sunset

Variation among species is greater than variation among individuals and ages and between sexes.

Flight-calling behavior is **not** limited to migratory periods in warblers.

8-Channel Microphone Array, Oct 2007

Real-time Auto-detection Network: Boston Shipping Lane

Whales Detected

Last Whale Heard: 2008-01-30 09:08:23 GMT on Buoy DMF1

Current time: 2008-01-30 16:30:25 GMT

Call Location on 19-Channel array – 14 Sept 2007

Why study migrants and migration using acoustic technology?

At present, flight call recording represents only reliable method for directly identifying birds migrating at night.

Additionally, acoustic technologies facilitate:

- sampling species beyond range of traditional protocols;
- collecting for extended periods at difficult-to-access sites;
- recording secretive species that vocalize infrequently;
- generating permanent record for repeated sampling;
- estimating variation in probabilities of detection

Monitoring bird migration using radar

Andrew Farnsworth, Conservation Science Program

Radar Basics

- Radars detect targets, measuring reflected radio signals.
 - The greater in size and number the targets, the stronger the reflected, scattered signals.
 - Reflectivity magnitude relates to the number and size of the targets encountered.
- Radar determines target location and measure "radial velocity," the component of target velocity moving toward or away from the radar.

Radar Basics

From NJ
Audubon
website, after
D. Mizrahi and
CUROL

Radar Basics

Weather Surveillance Radar-88D

- Doppler radar (~150 across the US)
- Antenna elevation angle 0.5°
- Resolution of 1 km x 0 .96° beam width
- At 37 km this beam samples an altitudinal band 150-760m above ground level.

WSR-88D Products

Base reflectivity: relative amount of reflected energy from targets detected in a radar scan.

Radial velocity: component of target velocity moving toward or away from the radar.

Precipitation

Sunset

Non-biological, non-meteorological <u>Chaff – military activities</u>

Non-biological, non-meteorological Strobes and Anomalous Propagation

Non-biological, non-meteorological Critical station Error

Wind-related products

Vertical wind profile shows the velocity and direction of windborne targets above the radar.

SkewT samples wind speed and direction at specified levels of the atmosphere from a balloon launch.

Clear Air Mode

8 12 16

Insects

Bats

Interpretation of bird movements

Relating bird density and radar reflectivity

Gauthreaux and Belser (1998,1999)

Lowery (1951) and Lowery and Newman (1955)

Bird Migration on Radar

Movements: Evening 24 April

Movements: Evening 24 April

Birds and weather

- Migration and weather
 - Frontal passages provide combinations of atmospheric conditions that facilitate migration

- Position of pressure centers and frontal boundaries
- Orientation of isobars
- Distribution of precipitation

Identifying key stopover habitats

Migration at the local scale

Migration at the continental scale

Examples: Thrushes, 9 Oct. 2005

Patterns of bird density and flight call counts exhibit wide variation.

Nightly temporal pattern of bird density and flight-call counts

Frequency distribution of peaks of bird density and flight-call counts

Farnsworth et al. 2004

Why study migration using radar?

Radar provides unique information to quantify the magnitude, direction, speed, and location of migrating birds.

Additionally, radar technologies facilitate:

- sampling at a variety of scales from 10s to 1000s km;
- collecting for extended periods at difficult-to-access sites;
- collecting ancillary data on atmospheric conditions and changes in these conditions;
- collecting data during periods when other methods are unavailable (cloudy conditions, high wind)
- Relating bird densities on radar to habitat features on the ground

Future plans for monitoring migrants

Why study migrants and migration using acoustic technology?

Survey "boreal-breeders" that winter in Amazonia

Monitor humans activities that create new hazards

Why study migrants and migration using acoustic technology?

Acknowledgments and Support

- Special thanks: W.Evans, M.O'Brien, M.Lanzone; P.Ryan
- CLO Bioacoustics Research and Conservation Science Programs, Wisconsin DNR, College of William and Mary, USGS; and <u>field crews</u> from CLO, Powdermill Avian Research Center, Mogollon Rim, Yuma
- J.Bradbury, G.Budney, R.Charif, C.Clark, K.Cortopassi, J.Danzenbaker, H.Figueroa, J.Fitzpatrick, S.Kelling, A.Klingensmith, T.Krein, I.Lovette, H.Mills, M. Powers, K.Rosenberg, C.Tessaglia-Hymes, J.Withgott,
- MMS (14-35-0001-30660, 1435-01-99-CA-30951), Kieckhefer Adirondack and Audubon Ford Fellowships, Victor Emanuel Nature Tours, Dept. of EEB at Cornell, CLO Assistantship and anonymous donations;
- DoD Legacy Program (05-245, 06-245, 07-245); C.Eberly, R.Fischer, J.Hautzenroder, and all DoD site contacts Kyle Rambo, John Joyce, John van de Venter, Rayanne Benner, Chris Pray, Chris Dobony, Eric Kershner, Colin Leingang, Matt Klope, Rhys Evans, Gary Cottle

Useful Websites

CUROL - <u>www.clemson.edu/birdrad</u>

DuPage - <u>www.weather.cod.edu/analysis/analysis.radar.html</u>

UW - <u>http://weather.uwyo.edu/mapper/</u>

NCAR - <u>http://www.rap.ucar.edu/weather/radar</u>

Bill Evans' Oldbird, Inc.: www.oldbird.org

Flight calls at Cornell: birds.cornell.edu/birdcalls

PARC: http://www.powdermill.org/bioacoustic.htm

XBAT: www.xbat.org

RAVEN: http://birds.cornell.edu/Raven

GlassoFire: www.oldbird.org/GlassoFire.htm

Clemson Radar Lab: www.clemson.edu/birdrad

