Common Avian Radio-tracking Methods &

Global Location Sensor Systems (geolocators)

Commonly used radio-tracking techniques

VHF transmitters (Very High Frequency)
Satellite transmitters (PTT, Platform Transmitting Terminal)
GPS (Global Positioning System)

Geolocators (Global Location Sensor Systems)

Case studies that used each system

Radio-tracking systems

Transmitting subsystem

Radio transmitter
Power source
Propagating antenna

Receiving subsystem

Receiving antenna Signal receiver Power source

Transmitting systems

Transmitting systems

Trade-offs between
Size/mass
Longevity
Detection distance

Battery powered transmitters 2 weeks to 2+ years

Solar powered location, seasonal or habitat limitations

Receiving systems

Three common radio-tracking methods in use today:

VHF radio tracking (Very High Frequency)

Satellite tracking (PTT, Platform Transmitting Terminal)

GPS tracking (Global Positioning System)

Attach transmitter to bird

Attach transmitter to bird

Transmitter emits a signal than can be picked up by a receiver

Attach transmitter to bird

Transmitter emits a signal than can be picked up by a receiver

When a directional antenna is plugged into the receiver and pointed directly at the transmitter, a strong signal is received

Attach transmitter to bird

Transmitter emits a signal than can be picked up by a receiver

When a directional antenna is plugged into the receiver and pointed directly at the transmitter, a strong signal is received

As the antenna is pointed away from the transmitter the signal fades

Attach transmitter to bird

Transmitter emits a signal than can be picked up by a receiver

When a directional antenna is plugged into the receiver and pointed directly at the transmitter, a strong signal is received

As the antenna is pointed away from the transmitter the signal fades

Each birds has a different frequency, individual identification

Brief description of satellite tracking PTT's

PTT (Platform Transmitting Terminal) attached to the bird uses orbiting satellites to relay the bird's location signal to other receiving stations

Brief description of GPS tracking

Orbiting satellites, GPS units, and PTT's

function as transmitting and receiving subsystems

Transmitters may be attached in numerous ways

study species habitat scale (temporal and spatial) life history stage

Very high frequency (VHF) radio frequency range from 30-300 MHz

Frequencies < VHF are called High frequency (HF)

Very high frequency (VHF) radio frequency range from 30-300 MHz

Frequencies < VHF are called High Frequency (HF)

Very high frequency (VHF) radio frequency range from 30-300 MHz

Frequencies > VHF are called Ultra High Frequency (UHF)

Frequencies for individual transmitters/birds are usually spaced 10-25 KHz apart

Tuning in specific radio stations

It is very important to be aware of any other radio-tracking studies in the same area when specifying transmitter frequencies!

A bird wearing a VHF transmitter can be tracked with a receiver and directional antenna by a person on the ground, on the water, or in the air

A bird wearing a VHF transmitter can be tracked with a receiver and directional antenna by a person on the ground, on the water, or in the air

Alternately, fixed stations may be erected to remotely track birds

Trade-offs between
Size/mass
Longevity
Detection distance

Battery powered transmitters 2 weeks to 2+ years

Solar powered location, seasonal or habitat limitations

Duty cycles save battery life

Various switches reduce battery life mortality (relatively low cost & mass)

Maximum range is not only dependent on the type of transmitter selected, but also...

Length and position of transmitter antenna Receiver sensitivity
Receiver antenna gain
Height (transmitter & receiver)
Vegetation
Humidity
Topography

RECEIVERS – detect and distinguish signals of specific frequencies

Receiver frequency range MUST include the range of transmitter frequencies

Seems silly, issue when borrowing equipment

RECEIVERS – detect and distinguish signals of specific frequencies

Receiver frequency range MUST include the range of transmitter frequencies

Seems silly, issue when borrowing equipment

Volume & Gain controls

An increase in gain increases signal sensitivity

up to a point

Increasing volume affords no greater signal sensitivity

RECEIVER ANTENNA size is determined by frequency

In general, the higher the frequency, the smaller the antenna

To receive signals from a transmitter @ 150 MHz

1 meter long antenna

To receive signals from a transmitter @ 27 MHz

5.5 meters long antenna

Antennas serve to:

Increase receiver gain (signal gathering capacity)

Assist in determining signal direction

Larger antennas (lower frequencies)
Yield greater gain and directionality

Reduce portability

Multi-element Yagi antennas are one of the most commonly used antennas in radio-tracking

horizontal length of metal (aluminum)

3-17 vertical elements

Length & spacing of the vertical elements depend on signal frequency

Twin Yagi systems can be set up for greater range and more precise directionality

Requires careful spacing of the antennas

Tracking Methods

Homing

Triangulating

Passive remote tracking

Avoid error

Automatic radio-tracking does not require that the researcher be in the field to obtain the animal's location

Bearings are recorded automatically without subjective error

High initial investment in equipment

Limited coverage (often)

Maintenance

Relatively low cost

Reasonable accuracy for many purposes

Labor-intensive

Weather-dependent if aircraft-based

Platform Transmitter Terminals (PTT)

Polar orbit at 850 km revolution around the Earth ~ 100 minutes

Number of daily passes increases with latitude

At the poles, the satellites can see each PTT on every pass, approximately 14 times per day per satellite per day

The period during which the satellite can receive messages from the PTT is ~10 minutes

Doppler shift

Trade-offs between Size/mass Longevity

Battery vs. solar power

Solar powered location, seasonal or habitat limitations

Duty cycles

Work best near the poles more transmissions/day

Gross movements

Dispersal path

Migration path

Breeding, nonbreeding ranges

Large error

0.25 - 1.5 km

Low number transmissions per day

\$3,000 - \$4000 US

Heavy

\$1-2 US per location

GPS Global Positioning System

Best of both worlds

GPS + PTT

SENDING GPS POSITIONS VIR ARGOS GPS Satellites Argos Satellite Processing Center Argos and GPS locations User

GPS +

Data Retrieval

GPS device functions as a data logger

Data Retrieval

GPS device functions as a data logger

GPS device linked to orbiting satellite through PTT

Data Retrieval

GPS device functions as a data logger

GPS device linked to orbiting satellite through PTT

GPS data relayed to a central data store or internet-connected computer using cellular, radio or satellite modem

\$3,000 - \$4000 US

Heavy

\$7 - \$8 US per unit per day

Geolocators (Global Location Sensor Systems)

Record light intensity levels

Calculate sunrise and sunset times

Latitude and longitude estimated from sunrise-sunset

Low power + data compression

Collect and store data 2+ years

Spatial resolution in coarse

185-200 km

The addition of temperature sensors can refine location estimates

1–2° error reduction

Coarse data

Recapture necessary

Inexpensive (\$200+ US)

Light weight (1.5+ grams)

Long lasting (2+ years)

What data are necessary to address my research question?

What data are necessary to address my research question?

What tracking technique(s) can provide these data?

What data are necessary to address my research question?

What tracking technique(s) can provide these data?

What system will work best? for the bird and researcher

What data are necessary to address my research question?

What tracking technique(s) can provide these data?

What system will work best? for the bird and researcher

Behavioral plasticity (ornithologist) each species and habitat are different

pre-packaged equipment uncommon