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Outline

• Flight Theory: how far can a bird fly with a 
given amount of fuel (fat)

• Using static optimization to find optimal 
migration schedules: when should a bird 
leave a stopover site? 

• Optimal Migration schedules: use of state-
variable models in migration



Theory of Flight (Simplest Version)
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•increment in Flight distance with decrease in 
body mass due to fuel consumption is 
proportional to Lift:drag ratio and inversely 
proportional to body mass

•in an “ideal” bird L/D is proportional to 
1/square root of mass

•gives the simplest Range Equation. f is 
fuel load (g of fat/lean body mass)

1Y = c(1 - )
(1+f)



Theory of Flight

• There are many others

• All theory is based on Fixed 
wing aircraft aerodynamics

• Pennycuick’s FLIGHT program 
simulates flight and fuel 
consumption in ten minute 
increments

1Y = c(1 - )
(1+f)• Simplest range equation 



FLIGHT program

http://www.bio.bris.ac.uk/people/staff.cfm?key=95

Can be downloaded from Colin Pennycuick’s
homepage at University of Bristol, Biological 
Sciences

or search on “Penncuick FLIGHT”

Jeff Kelly’s netlogo tool : 
http://www.migrate.ou.edu/netlogo/pennycuick-1.nlogo.html

Simulates fuel usage and muscle 
burning in ten minute increments 
throughout a migratory flight
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Optimal migration schedules

• Evolution by means of natural selection is 
a process of optimization

• individuals are behaving so as to 
maximize their fitness

• components of fitness: number of 
offspring, quality of offspring, survival

• for finding optimal migration strategies, we 
need a surrogate currency



During migration, what is a bird 
doing to maximize fitness?

• Minimize TIME: maximize overall speed of 
migration

• Minimize PREDATION
• Minimize ENERGY, if food is scarce 

during migration
• Combination of currencies



Range Equation in units of foraging 
time
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Minimize Time
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maximize overall speed migration:



Minimize Time
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Minimize Time
D

is
ta

nc
e 

(Y
)

fuel

Y(f0)

f=ktf
fT

0
fT

-kt0

optimal departure fuel (fT) 
increases with increasing 
fuel deposition rate (k)



Minimize energy cost of transport
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Minimize energy cost of transport
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Minimize overall energy
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fuel deposition rate at site (k)
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Predictions from theory



Testing the theory

• 9 tests
– 7/9 show significantly positive relationship 

between departure fuel and k
– strong support for time-selected migration in 

birds from experimental tests

(Hedenstrom 2008)



Other predictions

• flight speed should vary depending on 
currency, optimal flight speed is greater for 
time-selected migrants than for energy 
selected

• greater physiological flexibility expected in 
time-selected migrants (Weber and 
Hedenstrom 2001)



What the static optimization theory 
does not cover

• Refueling sites are limited
• fitness surrogate is a mixture of arrival 

time and arrival fuel.
• intermediate arrival time is optimal, fitness 

declines if bird arrives too early as well as 
too late

• decision to leave site depends on multiple 
state variables of individual bird



Modeling Migration
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Modeling Migration
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Decision to leave a 
stopover site depends 
on current state of bird 
i.e. time, location, fuel
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Dynamic state variable approach

• Components of a state variable model are:
– time horizon and time step
– state variables
– decision variables
– state dynamics and stochastics
– fitness function for backwards iteration
– terminal fitness
– parameters

• Output is: 
– maximum fitness for each possible state and time
– decision matrix, optimal decision at every possible 

state and time



Dynamic state variable approach

From: Clark & Butler 1999



Example (very simple) model
• 3 sites 
• each time step is 1 day, 
• time horizon is 4 days
• Terminal fitness – depends on time and fuel at final site F(t=4,s,x)
• decision variable (Stay or leave)
• state variables Fuel (X), site, time
• state dynamics, costs 1 fuel to migrate, add 1 if stay and forage :  

X(t+1) = min(2,X(t)+1) if bird stays 
X(t+1) = X(t) -1 if bird leaves site

• fitness 
fitness is maximum of (fitness if leave and fitness if stay)
F(t,s,x) = max(F(t+1,s+1,x-1),F(t+1,s,x+1)) 
if X(t) < 0 then F = 0
if (t = 4 and s = 1 or 2) then F = 0
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Dynamic state variable approach

From: Clark & Butler 1999



Uses of state-variable migration 
models

• forward-simulation to generate predictions

• re-generate decision matrices with different 
environmental conditions.

• compare results from different forward 
simulations



Uses of state-variable migration 
models

•consequences of different fitness measures (Weber et al. 
1998)
•decline in habitat quality (Weber et al. 1999)
•spacing and availability of stopover sites (Farmer & 
Wiens 1998; Farmer & Wiens 1999); 
•environmental stochasticity in fuel deposition rate, wind 
and predation (Weber et al. 1998).  
•State variable models have been applied to real species 
and give good predictions of observed patterns (Clark & 
Butler 1999; Farmer & Wiens 1999; Klaassen et al. 2006)
• used to address conservation questions about the 
effects of  anthropogenic actions on bird migration 
(Klaassen et al. 2006). 
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