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Summary

1. Use of radar in ornithology, chiropterology and entomology continues to increase, driven in part by wide-

spread online data availability. In addition to research applications, rapid growth in areas such as wind energy

and aviation has prompted the use of radar for conservation. While a variety of research applications motivate

ecologists to gain basic radar literacy, the ability to process and analyse radar data sets can be a daunting task

that may dissuade inexperienced ecological radar users. This effect is exacerbated by vague radar methodologies

in the ecology literature, as well as the combination of complex techniques and unfamiliar terminology in other

radar-focused disciplines.

2. While radar data come in many formats and levels of detail, a common type is the two-dimensional radar

image. As rasters of data with associated spatial coordinates, radar images are relatively easy to manipulate,

especially for those familiar with basic raster computations. Furthermore, because radar image data require

relatively small storage space, they can be readily downloaded from a number of online sources. With this in

mind, radar images provide a convenient foundation for ecological applications.

3. A primer on radar image interpretation and processing is presented, with a focus on image composition for

typical atmospheric surveillance radar scans. Additionally, a selection of existing ecological radar image process-

ing methods are overviewed. As a starting point, a basic algorithm for automated image processing is outlined

that may be modified to create specialized workflows. Three examples of the application of this algorithm are

included, illustrating its modification and use for automated feature extraction.

4. By outlining a basic algorithm, we hope to provide a clear starting point for the beginning radar user. When

combined with additional existing methods, this algorithm provides a wide range of refinements and modifica-

tions that can pave a path towards sophisticated radar processing workflows. In the long term, the ability of ecol-

ogists to independently analyse radar data will lead to better ecological interpretation of radar data and a more

informed application to conservation policy.
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Introduction

The application of radar to study airborne organisms has pro-

vided ecologists with a host of new methods for studying wild-

life. Stemming from techniques originally developed for

aviation, meteorology and the military, and the use of radar

has spread to ornithological, chiroptological and entomologi-

cal studies (Lack & Varley 1945). Radar is used for migratory

surveillance (Lack 1959;Able 1970;Alerstam1972; Pennycuick,

Alerstam & Larsson 1979; Richardson 1979; Bruderer, 1994,

1997; Diehl, Larkin & Black 2003;Westbrook 2008; Chapman

et al. 2010; O’Neal, Stafford & Larkin 2010; Dokter et al.

2011), characterizing stopover locations (Bonter, Gauthreaux

& Donovan 2009; Buler & Diehl 2009), identifying and moni-

toring animal aggregations (Williams, Ireland & Williams

1973; Russell & Gauthreaux 1998; Cooper, Raphael & Mack

2001; Larkin 2006; Kelly et al. 2012), as well as assessing

human–wildlife conflicts such as wind farm kills (H€uppop

et al. 2006; Plonczkier & Simms 2012) and collisions with

aircraft (Haykin et al. 1991; Zakrajsek & Bissonette 2001;

Nohara, Beason &Weber 2011). Additional reviews of ecolog-

ical radar applications can be found in Gauthreaux & Belser

(2003), Ruth (2007) andChilson et al. (2012a).

Innovations in radar hardware and system designs have

increased the availability of radar technology to the scientific

community. These improvements, along with the increasing

prevalence of online data archives, provide more opportunities

for ecologists to incorporate radar measurements into their

research. A major hurdle in the application of radar observa-

tions is extracting biologically relevant information from the

radar output. Presently, a wide range of marine, atmospheric

anddecommissionedmilitary radars areused inbiological stud-

ies to monitor airborne organisms. These systems include

radars that have been set up andoperatedwith the sole intent of

ecological monitoring, as well as systems that have other dedi-

cated purposes but serendipitously record biological entities. In

general, these radarsvarygreatly in theways inwhich theyoper-

ate, their scanning techniques, and the information that they*Correspondence author. E-mail: step@ou.edu
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record. As the use of radar in ecological applications continues

to spread andmature, there is an increasing need for ecologists

who are capable of designing and implementing algorithms for

extractingbiological information fromradardata.

The purpose of this primer is threefold. The first and most

fundamental goal is to provide a basic understanding and

interpretation of radar images. This includes the spatial

interpretations of common radar image types, and the radar

products displayed in these images. At a minimum, this basic

radar literacy can allow ecologists to use radar information in

a more informed manner. The second purpose is to provide a

bare-bones algorithm for automated feature extraction in

radar images. Although rudimentary compared to many

existing algorithms, this technique can provide an approach-

able starting point towards image processing for those just

beginning in radar aeroecology. The third and final aim was to

provide a review of more sophisticated radar processing tech-

niques in order to provide the next steps towards enhancing

this core algorithm.

The following sections 1) provide the necessary background

on the types and composition of radar images, 2) outline a

basic image processing algorithm for automated feature

extraction, 3) review the ecological radar image processing

literature, highlighting possible extensions to this core algo-

rithm, and 4) summarize the need and application of radar

image processing in aeroecology.

Background

SAMPLING STRATEGIES

Aradar samples the atmosphere by directing radiation through

an antenna to the region of the airspace that is of interest and

recording the backscattered signal. These resulting signals are

transformed into data products, sometimes generally referred

to as measurables or observables, that correspond to specific

sampling volumes located radially along the antenna beam

direction. That is, the retrieved information is a function of

antenna pointing direction in azimuth and elevation, as well as

range from the radar. Depending on the position and motion

of the antenna, different spatial and temporal informationmay

be extracted from the radar data. This discussion will focus on

radar systems that operate in surveillance modes, as opposed

to those that actively move the antenna to follow a defined

object, that is, tracking radar. A number of different sampling

techniques have been developed and optimized for surveillance

radar systems to extract specific information in time and space

based on the application needs. In particular, three sampling

strategies commonly utilized on radar platforms include fixed

beam, azimuth scanning and elevation scanning.

Fixed-beam, or spotlight, sampling is the most basic tech-

nique, requiring no antenna motion. In this case, the radar is

pointed in a fixed direction, often vertically or near vertically,

and repeatedly samples the airspace (Fig. 1a, left). As organ-

isms pass through the sampled volumes, each pulse returns a

profile of the radar measurables as a function of range

along the beam (Fig. 1a, centre). While each sample returns a

one-dimensional profile of measurables, consecutive samples

are typically displayed in series as a function of time to form a

range-time indicator, or RTI display (Fig. 1a, right). In addi-

tion, it is common that the results of several consecutive pulses

are averaged together to reduce the contamination by random

noise, thereby improving the data product quality. It is impor-

tant to note that the RTI display does not directly contain any

two-dimensional spatial information, but only the temporal

evolution of the sampled radial. Under specialized circum-

stances, however, it may be possible to infer spatial informa-

tion by making assumptions regarding the motion of the

individuals in the radar space. For example, if a large flock of

birds pass over the radar with their formation unchanging in

time, the temporal changes in theRTI plotmay be used to infer

spatial changes, that is, the flock formation. This assumption

may be valid in some ecological situations in which the head-

ing, speed and altitude of individual organisms remain fairly

constant as they travel over large horizontal extents (i.e. large-

scale migrations). In many cases, an organism may remain

within the beam for several consecutive pulses, resulting in a

horizontal line of increased intensity across the RTI display

(e.g. Schmaljohann et al. 2008, Fig. 2). Additional examples of

fixed-beam sampling in ecological applications have been

demonstrated by Moran et al. (2000), Chapman, Reynolds &

Smith (2003), Martin & Shapiro (2007), Dokter et al. (2013b;

Dokter et al. 2013a).

In the second technique, the antenna scans in elevation at a

fixed horizontal azimuth angle. In some cases, the antenna will

scan from one horizon, through the vertical, to the opposite

horizon (e.g. Fig. 1b, left), while other times, only a subset of

elevation angles are covered. These resulting radar data

products are a function of elevation angle and range from the

radar (sometimes referred to as an E-Scope, Fig. 1b, centre).

Unlike fixed-beam sampling, elevation scanning contains

explicit spatial information with the surveyed airspace encom-

passing a vertical cross section and is typically displayed as

such in the range-height indicator (RHI) format (Fig. 1b,

right). Gauthreaux (1991), Martin & Shapiro (2007) and van

Gasteren et al. (2008) provide ecological demonstrations of

elevational scanning.

Perhaps the most common sampling method in radar appli-

cations is the azimuthal rotation of the antenna (Fig. 1c, left).

If equipped with an antenna that produces a fan beam (with

the broadest portion of the beam aligned vertically), the

antenna is typically rotated at a fixed elevation angle, provid-

ing instantaneous surveillance across a range of heights. Com-

mon to marine radar systems and airport surveillance radars,

this scanning strategy provides rapid frame-to-frame updates,

but cannot provide the altitude of the detected objects (Larkin

& Diehl 2012). In the case of weather radars, a parabolic

antenna creates a highly focused beam, which is swept azi-

muthally through a number of elevation angles. A typical

beam width for weather radars is about one degree. While

these volume coverage patterns lead to slower update times,

they provide three-dimensional coverage of the airspace. In

both cases, thesemethods yield information about the horizon-

tal distribution of organisms, with radar products being a
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function of azimuth angle and range from the radar (some-

times referred to as a B-Scope, Fig. 1c, centre). In the case of

weather radar, the three-dimensional data products, often

referred to as volume data, can be thought of as a collection of

two-dimensional scans (as in Fig. 1c, centre), each at a different

elevation angle. These two-dimensional, constant elevation

angle data products – often referred to as sweeps, tilts or cuts

are typically displayed as viewed from above in the plan posi-

tion indicator (PPI) (Fig. 1c, right). Azimuthal scanning has

been applied widely within the ecology literature, with Horn &

Kunz (2008), Buler & Diehl (2009), Dokter et al. (2011) and

Dokter et al. (2013b) demonstrating several applications.

RADAR PRODUCTS

While the previous section detailed the spatial and temporal

interpretations of radar images, the precise content of the

pixels that make up these images has intentionally been left

vague, using general terms such as radar data, measurables,

observables and products. Typically, the terms ‘measurables’

and ‘observables’ refer interchangeably to fundamental quan-

tities that radar systems are capable of recording. Both back-

scattered power and radial velocity are examples of radar

observables. The term ‘products’ typically refers to the final

data that are created from radar output. These products may

simply be the observed measurables, or quantities that have

been derived from one ormore of the recordedmeasurables. In

either case, the products that a radar system may produce are

limited by the specific radar system capabilities. For example,

many of the marine radars used in ecological applications can-

not measure radial velocity and therefore cannot produce the

radial velocity product. The following outlines common sur-

veillance radar products, with a focus on atmospheric and

weather radars.

(a)

(b)

(c)

Fig. 1. Physical sampling technique (left column), data raster image (centre column) and physical coordinate image (right column) for (a) fixed-beam

sampling, (b) elevational scanning and (c) azimuthal scanning.
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Themost common radar observable is backscatter intensity,

often presented as amplitude or power. Inmost meteorological

radars, this quantity will have been range-corrected and cali-

brated to a standard scale and reported in logarithmic units as

radar reflectivity factor (Z). In the case that the received radar

scatter is known to be of biological origin, and the power has

been calibrated to radar reflectivity factor, Z can be related to

the size and density of airborne organisms. Following this type

of post-processing, it is possible to create radar images display-

ing specialized products such as the number or density of

biological creatures. Techniques for creating such products as

well as additional discussion on power, reflectivity factor and

related measurables can be found in Dokter et al. (2011) and

Chilson et al. (2012b).

Many radar systems not only record the amplitude of the

returned signals, but also can process the phase of the return

signal to obtain information on an objects velocity along the

radar beam axis. For these Doppler systems, two additional

products are reported: radial velocity and spectrum width of

the radial velocity. Radial velocity is the average velocity

within each sampling volume along the radar beam (i.e.

towards or away from the radar). Spectrumwidth is a measure

of the velocity diversity along the beam direction within a sam-

pling volume. Because these two measures are only sensitive to

motions along the beam radial, they are highly dependent on

the pointing direction of the beam. For example, a beam

pointed vertically at a flock of migrating geese only resolves

the velocity from changes in altitude, not horizontal motions.

(a)

(c) (d)

(b)

Fig. 2. (a) Idealized intensity raster image with white dashed line separating noise-only heights. (b) Binary raster image after background noise

threshold. (c) Blob-coloured raster imagewith objects labelled. Blobs #1, 2 and 4 are noise pixels; #3, 5, 6, 7 and 9 represent bird signals; #8 represents

light rain; #10 represents isolated ground clutter; #11 and 12 represent widespread ground clutter or heavy rain; (d) Intensity raster image result after

filtering by size andmaximum intensity.
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An introduction to the fundamentals and common interpreta-

tions of radial velocity and spectrum width is provided in

Rinehart (2010), Ch. 6.

A technology that is rapidly becoming available for ecologi-

cal application is the use of polarimetric radar. Often designed

for meteorological use, polarimetric radar sends out signals at

orthogonal polarizations to infer information on the shape,

orientation and diversity of scatterers within the sample vol-

ume (Zrni�c & Ryzhkov 1998). The use of polarimetric infor-

mation has been propelled by the recent increase in the number

of dual-polarized weather surveillance radars throughout

Europe and North America (e.g. EUMET/OPERA 2014;

NEXRAD, see Zrni�c 2007). This discussion will be limited to

the three polarimetric observables most commonly applied to

biological scatter: differential reflectivity (ZDR), linear depolar-

ization ratio (LDR) and copolar correlation coefficient (qHV).

A complete overview of polarization modes and their associ-

ated observables is presented in (Bringi &Chandrasekar 2001).

Both ZDR and LDR give information on the relative differ-

ences in magnitude between the two received polarizations.

This information is related to the shape, size and orientation of

the scatterer with respect to the radar beam. A given radar

system typically only reports either ZDR or LDR, depending

on whether the two polarizations are sent out and received

simultaneously or alternating (Rinehart 2010, pp. 208–212).

Correlation coefficient describes the similarity between the

returned signals from the two polarizations and can indicate

variations in the characteristics or types of scatterers in the

sampled volume.

RADAR IMAGE COMPOSIT ION

For the sake of example, the duration of this section will con-

sider an arbitrary radar image of some measure of backscat-

tered intensity (e.g. reflectivity factor, reflectivity, uncalibrated

power), although similar discussions can be made for other

radar products. Regardless of the sampling method, the result-

ing radar images are comprised of the same basic three compo-

nents: the background noise floor, desired signals and clutter.

The background noise floor is the radar signal intensity result-

ing from an absence of scatterers. The level of this intensity

depends on the ambient electromagnetic noise from the envi-

ronment and the radar electronics. The desired signals are the

objects of interest within the radar image. Depending on the

application, these may be weather systems (for meteorolo-

gists), aircraft (for air traffic controllers) or birds, bats and

insects (for ecologists). All of the remaining signals are consid-

ered clutter. These may be echoes from the ground, buildings,

towers or other objects that are not of interest. They may also

be artefacts of the radar hardware, such as receiver ringing or

radial spurs. To obtain useful information from a radar image,

it is usually necessary to isolate the desired signals from the

background noise and remove the remaining clutter.

As the radar samples the atmosphere, it stores the backscat-

tered signals as a raster, or matrix, of values with their corre-

sponding spatial and temporal coordinates. Although these

data are typically visualized in their physical coordinate

systems (Fig. 1, right column), it is also useful to consider these

data as the rasters stored within the computer (Fig. 1, centre

column). When visualizing these rasters as images of intensity

values, similarities among the three sampling methods emerge.

From the raster images, all three sampling types are character-

ized by ground clutter at short ranges and biological signals

at intermediate ranges. Additionally, due to the physical

constraints on the maximum altitude of organisms, radar

sensitivity and beam geometry, there is often an absence of bio-

logical scatterers at far ranges. Through these similarities, it is

possible to create general image processing algorithms that can

be implemented on all three sampling methods with little

modification.

Two factors determine how an organism of fixed radar cross

section manifests itself in a radar image: the size of the radar

sampling volumes and the in-flight spacing of the organisms.

When the spacing of organisms is much larger than the size of

the radar sampling volumes, the radar can resolve individual

organisms as isolated clusters of pixels, commonly referred to

as hot spots, blips or blobs (as in Fig. 1; see Lindeberg 1993).

As the spacing of individuals decreases, the blobs in the image

become less spatially isolated. At a sufficiently low spacing, the

blobs begin to overlap, thus forming a continuum of increased

backscattered intensity thatmakes it impossible to resolve indi-

vidual scatterers. When the separation between organisms is

large, it often seems paradoxical that a single small organism

(on the order of cubic centimetres) may simultaneously illumi-

nate a number of adjacent radar sampling volumes (on the

order of several cubic kilometres). In other words, based on

physical size, one would expect an individual to manifest as a

single pixel rather than a multipixel blob. While the physical

organism surely is not occupying this large sampling space, the

inconsistency can be reconciled by the definition of the radar

beam boundaries. Although the radar beam is often described

as having well-defined boundaries, these values are not hard

cut-offs, but rather describe the region of the beam in which

sensitivity has decreased by a factor of one half (Chilson et al.

2012b).With this inmind, an organism just outside of a sample

volume will still produce a backscattered signal, but the

strength will be much less than a corresponding organism

within the volume. Nevertheless, many birds, bats and large

insects still produce observable signals in the volumes adjacent

to that which they occupy, resulting inmultipixel blobs.

It is also worth noting that the manifestation of organisms

in an image can vary greatly depending on the radar product.

For example, a flock of birds flying through a rainstorm may

be impossible to detect in an image of backscattered power.

However, if the flock is flying against the wind, it may produce

an obvious signature in an image of radial velocity. Similar

effects are often seen in polarimetric images, as is illustrated in

supplemental example case three (S2).

Abasic image processing algorithm

Although a variety of image processing techniques exist, many

can be implemented from a common starting point that

exploits common features of radar images. In fact, extensions
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of the following algorithm have been utilized in a number of

studies under different names. Examples include the spatially

explicit patch identification ofHorn&Kunz (2008), the contig-

uous cell-searching algorithm of Dokter et al. (2011) and the

blip extraction software, radR, described in Taylor et al.

(2010). Unlike these examples, however, the following focuses

on the essential conceptual and algorithmic steps necessary for

a basic implementation of such workflows. With this in mind,

our goal is to go illuminate the inner workings of these tech-

niques and software packages that are so commonly applied.

Furthermore, this robust starting point simplifies the develop-

ment and incorporation of additional radar products into a

commonworkflow.

As previously described, the three major sampling tech-

niques yield data raster images with similar characteristics.

With this in mind, we use an idealized data raster of backscat-

tered intensity to demonstrate this method with the under-

standing that the same implementation may be used regardless

of sampling type. As in Fig. 1, the raster rows correspond to

range with the radar located at the bottom of the image, and

columns can be thought of as time, elevation angle or azimuth

angle. Following typical image processing conventions, the

raster coordinates will be described by the row index i and

the column index j, with the origin in the upper left corner of

the raster image.

The idealized intensity raster [intensity] in Fig. 2a is

comprised of a Gaussian noise background with a mean of 0

expressed in terms of arbitrary logarithmic intensity units. Five

moderate-intensity, bird-like signals are scattered across the

image (Fig. 2c, #3, 5, 6, 7 and 9). Additionally, three types of

clutter are included. The first is a widespread, low-intensity

clutter similar to that of dense insects or light rain (Fig. 2c, #8).

The second is a small, high-intensity echo, commonly formed

by aircraft or isolated ground clutter such as cell towers or

buildings (Fig. 2c, #10). The third type is a widespread, high

intensity signal, typical for ground clutter close to the radar or

precipitation (Fig. 2c, #11 and 12). The following details the

steps required for isolating the desired signals from such

an image. In addition, a basic pseudo-code for a possible

implementation of the following algorithm is included as a

supplement (S1).

STEP 1: DETERMINE THE BACKGROUND THRESHOLD

The first step towards identifying biological signals is distin-

guishing between echo signals and the background noise in the

original intensity image. In other words, what intensity

threshold separates something from nothing? This is achieved

by identifying portions of the image that contain only noise. In

most applications, these regions exist at ranges that overshoot

the airspace containing clutter and biological scatterers. While

it is still possible to have contamination by weather signals at

these far ranges, these can typically be flagged by their high

intensity and large spatial extent. From the pixels in the signal-

free regions, the mean and standard deviation of the back-

ground noise can be calculated. It is assumed in Fig. 2a that

the ranges corresponding with image rows 0 through 10 (i.e.

above the white dashed line) are signal free and contain only

background noise. This results in 550 pixels for the calculation

of the noise statistics. From these statistics, a threshold may be

chosen such that intensities above the threshold are considered

signal and lower intensities are rejected as noise, resulting in a

binary image (Fig. 2b). In an effort to reduce computations

when processing many images, some may be tempted to calcu-

late this threshold once and apply it to all images. While this

may work in some cases, a number of factors influence the

noise level and can result in varying levels from image to image.

With this variation in mind, it is generally safer to calculate

each threshold independently for each radar image. It is also

worth noting that some radar data sources provide signal-to-

noise ratio (SNR) as an output product, which can be used

automatically for noise rejection.

In some situations, clutter exists at an intensity above the

noise level, yet consistently below the intensity of the desired

signals. For example, it may be the case that the desired

signals consist of birds but are mixed within lower-intensity

insect clutter. In this case, a threshold may be manually

selected that is between the bird and insect intensities. As

before, the result will be a binary image, this time including

the clutter pixels below the selected threshold with the noise.

In general, the ability to isolate the desired signals from over-

laid clutter using only intensity is an ideal case, but will be

considered throughout this example. Later sections will

describe some methods for refining these thresholds using

multiple radar products.

STEP 2: GROUP CONTIGUOUS PIXELS

The second task is performed on the binary image resulting

from the previous steps and consists of grouping contiguous

pixels into coherent objects, often referred to as blob colouring

or connected-component labelling. A number of blob colour-

ing algorithms have been developed for increased computa-

tional efficiency and are reviewed in (Alnuweiri & Prasanna

1992). For the sake of simplicity, one of the most straightfor-

ward implementations will be described. In this example, pixels

adjoined along their long edges (i.e. top, bottom, right and left

sides) will be considered connected, while pixels adjoined

diagonally (i.e. at vertices) will not be considered connected.

Following the application of the noise threshold, a binary

image distinguishing signal (1) and noise (0) is created

(Fig. 2b). To implement blob colouring, the pixels in the image

are looped over from left to right and top to bottom. If the cur-

rent pixel is noise, no action is taken and we move to the next

pixel. If the current pixel is signal, we check its top and left

neighbours to see whether either are part of an existing blob.

To allow this operation on the first row and first column, the

top and left edge of the image must be padded with zeros, such

that the first row, i = 0, and column, j = 0, are noise, and the

original image starts on row i = 1 and column j = 1.

The resulting raster image [blobID] has a value of zero

everywhere there is noise and a unique identifying number for

each pixel in a blob (Fig. 2c). For example, all pixels in blob #3

would have a value of three. As a result, when displaying this
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raster as an image, each blob is a unique colour, hence the

name blob colouring.

STEP 3: CHARACTERIZE BLOBS

After grouping pixels into blobs and giving themunique identi-

fying numbers, the characteristics of each blob may be

obtained. For example, the total number of pixels comprising

each blob can be found. Other useful characteristics are the

maximum, minimum and mean intensities of each blob. Char-

acteristics can be found not only from the intensity raster, but

any additional rasters of observables. This may be achieved by

using the [blobID] raster to index the pixels of other rasters

that correspond to specified blobs. Two blob characteristics

are computed for this example. The first is the total number of

pixels forming the blob. This quantity gives an approximation

of the spatial extent of the source of the blob. One caveat in

using this characteristic stems from the change in beam width

as a function of range from the radar, causing scatterers to

occupymore, smaller cells at closer ranges, and less, larger cells

farther away. As a result, identical scatterers can produce dif-

ferent-sized blobs depending on their range. Nonetheless, the

number of cells comprising each blob can still give delineation

among the sources of some signals. The second characteristic is

the maximum intensity within each blob. While the use of

mean intensity would work equally well in this case, the maxi-

mum intensity is convenient for identifying large-scale clutter

sources with small, isolated areas of high intensity. These

characteristics for each blob are listed in Table 1.

STEP 4: F ILTER BLOBS

The final step in identifying biological signals is determining

which blobs have the characteristics associated with the desired

signals. This can be achieved by setting thresholds that filter

out undesirable blob characteristics, as determined by manual

inspection of some sample of radar images. To filter the blobs

in Fig. 2c, the blob characteristics in Table 1 were subjected to

three thresholds. The first insures that the maximum intensity

within the blob is below 40 dB units. This constraint filters out

many high-intensity clutter and storm signals. The next two

thresholds insure that the blob is comprised of more than one

pixel and less than 15 pixels. This will eliminate single pixels

that have exceeded the noise threshold and will filter spatially

large meteorological and ground clutter signals. The rightmost

column in Table 1 shows the result of the filtering for each of

the blobs, with rejected values highlighted in Bold. In the case

of Fig. 2d, only the blobs that passed both filter conditions

would be considered the desired biological signals, and all

other pixels can be censored.

While this method does allow the automated extraction of

features from radar images, the choice of filtering characteris-

tics and thresholds requires the manual interpretation of a

selection of radar images. Typically, even an inexperienced

radar user can tune the thresholds using a rudimentary guess-

and-check method on a subset of images until the desired fea-

tures are adequately extracted. Despite the need for manual

tuning, the method does have value. As a simple application,

this algorithm can serve as a first pass for data that would

otherwise be processed wholly by manual human inspection.

As such, it can speed the task of human data inspection by giv-

ing an initial guess of feature positions, or in ideal cases, fully

processing the image, leaving only quality checks required by

human intervention. In the case of large data volumes, the ben-

efit gained by adding such a tool can yield significant improve-

ments in analysis efficiency. Furthermore, it is possible to

develop this algorithm into a robust image processor, provided

that the combination of available radar products provides

sufficient discrimination among the image background, clutter

and the signals of interest. However, to do so likely requires

some interaction with an experienced radar user and will vary

greatly among radar systems, scan types and geographical

regions. While this development is typically only possible on a

case-by-case basis and following the analysis of expansive data

sets, the following section will describe some techniques that

may serve as a path towards such refinements.

Image processing extensions

Another class of techniques relies not on the quantitative

values of the radar products, but rather the shapes or patterns

within the image, or the image morphology. Typical morpho-

logical image processing may use a priori knowledge such as

the size, shape and features of the desired signals (Lakshmanan,

Zhang & Howard 2010; Mead, Paxton & Sojda 2010; Taylor

et al. 2010; Chen, Ning & Li 2012), or their expected location

relative to the radar (Lakshmanan, Zhang & Howard 2010).

While the previous section simply considered the number of

pixels comprising each blob, extensions can bemade by consid-

ering blob characteristics such as the maximum size along (or

across) the beam axis (Taylor et al. 2010), symmetry, texture,

convexity or concavity, and other shape-basedmetrics.

For certain radar systems, additional information on the

motion of the organisms can be used to define the objects of

interest. For surveillance radars, motion information may be

obtained in two ways. When organisms appear as isolated

Table 1. The characteristics of the objects identified in Fig. 2c and their

resulting filter classification. Values in bold fail tomeet filter criteria

Blob

identifier

Number of

pixels

Maximum

intensity

Filter

result

1 1 4 Reject

2 1 2 Reject

3 9 22 Pass

4 1 2 Reject

5 9 24 Pass

6 9 23 Pass

7 9 25 Pass

8 64 19 Reject

9 9 22 Pass

10 4 47 Reject

11 104 56 Reject

12 35 60 Reject
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individuals in the radar image, and multiple, successive images

are available, the position and motion of individuals can be

tracked from scan to scan. These track-while-scanning tech-

niques depend on the consistency of flight paths between scans

and have the ability to eliminate spurious signals that would

otherwise cause false detections. Such techniques are employed

in Taylor et al. (2010) andDinevich&Leshem (2006). The sec-

ond source ofmotion information is the radial velocity product

and is limited to Doppler systems. Knowledge of the speed of

the organisms of interest can be used to eliminate signals from

other organisms (Gauthreaux & Belser 2003; Liu, Xu&Zhang

2005; Zhang, Liu & Xu 2005). Additionally, the diverse

flapping of collections of organisms often results in enhanced

texture in the velocity product across adjacent resolution bins

(Dokter et al. 2011). Furthermore, these variations in veloci-

ties lead to higher values of the spectrumwidth of radial veloc-

ity in Doppler radars (Koistinen 2000; van Gasteren et al.

2008; Holleman, vanGasteren&Bouten 2008).

Finally, radar systems with dual polarizations often make

use of this polarization diversity to separate biological echoes

from those of weather. Many of these methods have been

developed by meteorologists and hydrologists to discriminate

between precipitation and airborne organisms based on multi-

ple polarimetric variables (Gourley, Tabary & du Chatelet

2007; Park et al. 2009; Chandrasekar et al. 2012; Al-Sakka

et al. 2013). Despite the motivation of these studies, the results

provide a path towards biological discrimination in ecological

applications. For example, biological signals are generally

characterized by low qHV, larger and highly variable ZDR, and

low absolute differentialDoppler velocity (Melnikov, Leskinen

&Koistinen 2014). Beyond simple biological discrimination, it

is also possible to discriminate between birds and insects based

on polarimetric information (Zrni�c &Ryzhkov 1998).

Conclusion

As human use of the aerosphere becomes more pronounced, it

is imperative that ecologists develop methods for quantifying

the impacts of these human uses on airborne animals. Radar is

a nearly universal sensor that can provide high-frequencymea-

surements of the abundance, distribution and diversity of ani-

mals in the air over large spatial extents. To realize the

ecological potential of these measurements, a broader under-

standing of the challenges and opportunities associated with

analysis of radar data is needed among ecologists. To begin to

establish this broader understanding, we describe fundamental

steps in identifying and quantifying the biological signals

received by radars. We propose that the approach we describe

can form the basis for many more sophisticated and auto-

mated radar data processing methods. Our hope is that if a

diversity of ecologists can become familiar with this approach,

then the pace of innovation in radar data analysis will increase

and yield rapid increases in understanding of aeroecology. This

increased understanding is needed for developing systems that

help reduce human–wildlife conflicts associated with collisions

between flying animals and aircraft, unmanned aerial vehicles,

communications towers andwind turbines.
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